Hadamard's inequality - определение. Что такое Hadamard's inequality
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Hadamard's inequality - определение


Hadamard's inequality         
THEOREM
Hadamard inequality
In mathematics, Hadamard's inequality (also known as Hadamard's theorem on determinants) is a result first published by Jacques Hadamard in 1893.Maz'ya & Shaposhnikova It is a bound on the determinant of a matrix whose entries are complex numbers in terms of the lengths of its column vectors.
Poincaré inequality         
In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
Grönwall's inequality         
THEOREM THAT GIVES BOUNDS ON INTEGRALS OF FUNCTIONS
Gronwall's lemma; Grönwall's lemma; Gronwall inequality; Gronwall lemma; Grönwall inequality; Grönwall lemma; Bellman-Gronwall inequality; Bellman-gronwall inequality; Groenwall's inequality; Groenwall inequality; Groenwall lemma; Groenwall's lemma; Gronwall–Bellman inequality; Gronwall's inequality; Gronwall-Bellman inequality
In mathematics, Grönwall's inequality (also called Grönwall's lemma or the Grönwall–Bellman inequality) allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form.